Name of subject	Thermal Engineering and Hydropower (ECTS 11)
Subject/module code	ITG12310
Science taught semester	
(s).	2 nd and 3 rd semesters
Responsible teacher	Baratov Laziz
Education language	Uzbek
Study to the program connection	Compulsory
	Total hours - 330 .
Training hours (this	Audience Training hours - 132.
including independent	Lecture hours - 48
education)	Laboratory hours - 36
,	Practical hours - 48
ECTO	Independent education - 198 hours
ECTS	
The purpose and tasks of	The goal of teaching science is to develop knowledge, skills, and
subject / learning outcomes	competencies in non-energy fields in each student studying in these
	areas, appropriate to the profile of the field, in terms of the laws of thermodynamics, types of heat engines, their structure, operation in
	cycles, and thermodynamic processes and heat transfer that occur in
	them.
	The task of the subject is to teach students the theory of the
	operation of heat engines, the laws of energy circulation, cycles and
	structure of energy devices, the processes that occur in them, as well as
	heat transfer and the principles of operation of thermal energy devices.
	Learning outcomes:
	1. Study the history and prospects of the development of the electric
	power system.
	2. Get acquainted with the laws of thermodynamics.
	3. Study the types, structure, and operation of heat engines in cycles.
	4. Study the laws of energy circulation in power plants.
Course content (tenics)	5. Heat transfer and the principle of operation of heat power plants.I. Main theoretical part (Lecture)
Course content (topics)	Topic 1: Introduction to the subject of "Heat Engineering and
	Hydropower". History and development trends of thermodynamics and
	heat engineering
	Topic 2 : Heat capacity. Molecular-kinetic theory of heat capacity of
	gases.
	Topic 3: Law of conservation and circulation of energy. Amount of work
	and heat in a thermodynamic process. I-th law of thermodynamics.
	Topic 4: Analysis of basic thermodynamic processes.
	Topic 5: Isobar, isochoric, isothermal, adiabatic and polytropic
	processes.
	Topic 6: Definitions of the II-th law of thermodynamics. Direct and
	inverse periodicity. Thermal efficiency of a heat device
	Topic 7: Water vapor and its properties. H-s diagram of water vapor Topic 8: Steam turbine devices. Rankine cycle. Cycles of a steam turbine
	device.
	Topic 9: Gas turbine device. Cycles of a gas turbine device.
	Topic 10: Fundamentals of heat transfer. Basic concepts. Heat transfer
	methods: heat conduction, convective heat transfer, radiation. Heat
	transfer.
	Topic 11: Fundamentals of convective heat transfer. Convective heat
	transfer
	Topic 12: Heat transfer. Heat transfer of a single and multi-layer flat wall
	under the boundary condition of the third order.
	Topic 13: Basic laws of heat transfer by radiation.

Topic 14: Heat exchange devices. Types of heat exchange devices.
Recuperative, regenerative and mixed heat exchange devices.
Topic 15: Compressors, their types, structure and operating methods
II. Instructions and recommendations for organizing
laboratory exercises.
In laboratory classes, students develop practical skills and
competencies in various indicators of processes in electrical networks
and systems, conducting experiments, calculating and drawing tables
and graphs. The proposed topics are selected based on opportunities and
conditions.
Recommended topics for laboratory work:
1. Pressure and temperature measuring instruments;
2. Verification of the Boyle-Mariotte law;
3. Determination of the mass heat capacity of air;
4. Determination of the thermal conductivity of an insulating
material;
5. Determination of the thermal conductivity of a horizontal pipe;
6. Operation of a single-stage piston compressor;
III. Instructions and recommendations for practical training
The teacher's preparation for a practical training begins with the
study of the initial documents (curriculum, thematic plan, etc.) and ends
with the development of a lesson plan. The teacher should have an idea
of the goals and objectives of the practical training, the amount of work
that each student must perform.
Methodological instructions are the main methodological document
of the teacher in preparing and conducting practical training.
The purpose of a practical training is to understand the theory, acquire
skills. It is to consciously apply it in educational and professional
activities, and to develop the ability to confidently form one's own point
of view.
Recommended practical topics:
1. State parameters and equation of state;
2. Heat capacity
3. Isobar, isochoric, isothermal processes,
4. Adiabatic and polytropic processes;
5. Carnot cycle
6. Steam turbine device. Rankine cycle.
7. Heat transfer.
8. Heat exchangers.
IV. Independent learning and independent work.
Independent learning competence serves to support students'
independent self-development and increase the effectiveness of
professional activities. Students perform independent work on their
mobile devices under the guidance of a teacher in a traditional or
electronic form.
Independent study for recommended topics:
1. Ideal gas equation of state
2. Ideal gas mixtures
3. Heat capacity of ideal gases
4. I-law of thermodynamics
5. Isobaric, isochoric, isothermal, adiabatic and polytropic processes
6. II-law of thermodynamics
7. Cyclic processes. Carnot cycle
8. Heat conductivity of a flat wall and a cylindrical wall
9. Heat transfer
10. Laws of radiation.
10. Heat exchangers.
11. Gas turbine devices.

	12. Compressor devices.
	-
Student assessment	Assessment of student knowledge is based on the mastery of the teaching materials during the semester and final control (tests, assignments, written and oral work results).
	During the course of Heat Engineering and Hydropower Engineering,
	students are evaluated on a 100-point system. Of these, 50 points are
	allocated to the current and intermediate results (60% of 50 points are
	current control, independent study and 40% are intermediate control),
	and 50 points are allocated to the final control results. Students whose
	total score of current and intermediate points is less than 30 points are not admitted to the final control exam. A student who scores 30 or more
	points in the final control is considered to have mastered the subject.
Requirements for exams	The student must have fully mastered the theoretical and practical
1	concepts of the subject, be able to correctly reflect the results of the
	analysis. The student must have completed the tasks given in the current
	and intermediate forms of independent work, assessment. At the same
	time, he must have received the necessary points from the current,
	intermediate, independent education and final tests in the relevant
	subject within the specified time. A student who has not submitted current control, intermediate
	control and independent education tasks, as well as who has scored less
	than 30 points on these tasks and types of control, will not be included in
	the final type of control.
	Also, a student who has missed 25 or more percent of the classroom
	hours allocated to the subject without an excuse will be expelled from
	this subject, will not be allowed to take the final exam and will be considered as not having mastered the relevant credits in this subject.
	A student who fails the final exam or scores less than 30 points on
	this type of exam is considered academically indebted.
Recommended	Main literature
Literature	1. S. Kleein., G.Nellis. Thermodynamics. Cambridge, 2012
	2. Alimova M.M., Mavjudova Sh.S., Isaxodjayev X.S., Raximjonov
	R.T., Umarjonova F.Sh. «Issiqlik texnikasining nazariy asoslari»
	fanidan tajriba ishlari to'plami. Uslubiy qo'llanma, 1-qismT.: Toshkent, ToshDTU, 2006.
	3. Koroli M.A., Umarjonova F. Sh., Xoshimova F.A.
	Termodinamika. Issiqlik texnikasi. darslik Toshkent: BOOK TRADE
	KO, 2022
	4. Mavjudova Sh.S. Termodinamika va issiqlik texnikasi. Darslik, – Toshkent.: Fan va texnologiyalar nashriyoti-matba uyi, 2022
	5. Mavjudova Sh. S. Issiqlik texnikasi, O'quv qo'llanmaToshkent:
	O'zbekiston faylasuflari milliy jamiyati nashiriyoti, 2023.
	6. Umarjonova F. Sh., Isaxodjaev X. S., Mavjudova Sh. S., Alimova L.O., Axmatova S. R. "Issiqlik texnikasi" fanidan laboratoriya ishlari
	to'plami. Uslubiy qo'llanma. – Toshkent, ToshDTU. 2014-94 b.
	7. Uzoqov G'.N., Qodirov I.N., Isaxodjaev X.S Termodinamika.
	O'quv qo'llanma -Toshkent: Voris- Nashiriyot, 2018.
	8. Zohidov R.A., Alimova M.M., Mavjudova SH.S. Texnik
	termodinamika va issiqlik uzatilishi fanidan masalalar toʻplami. – Toshkent.: TDTU, 2006.
	Additional literature
	1. Mirziyoyev Sh.M. Yangi Oʻzbekiston taraqqiyot strategiyasi. 2- toʻldirilgan nashr. – T.: Oʻzbekiston, 2022. – 44 b.
	2. Islom Karimov nomidagi Toshkent davlat texnika universiteti
	talabalari mustaqil ta'limni tashkil etish boʻyicha Tartibi. – T.:
	ToshDTU, 10.06.2024. – 6 b.
	3. В.П.Белоглазов. Теоретические основы теплотехники.

Теплопередача. Нижневартовск, 2016	
4. А.А.Яновский. Теплотехника. Уч. пособие. С	таврополь. 2020
5. Koroli M.A., Mavjudova SH.S. Zamonaviy peda	agogik
texnologiyalar. Metodik ishlanmaTashkent.: TDTU	, 2003.
Internet sources:	
16. <u>www.ziyonet.uz</u> – milliy oʻquv materiallarini qi	idiruv sayti.
17. <u>www.gov.uz</u> – O'zbekiston Respublikasining h	ukumat portali.
17. <u>www.google.com</u> – xalqaro oʻquv materiallarin	i qidiruv sayti.
19. <u>www.energystrategy.ru</u> – "Energetika siyosati v	a strategiyasi"
axborot portali	- •
20. <u>www.twirpx.com</u> – xalqaro oʻquv materiallarini	i qidiruv sayti.